首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   124篇
  免费   3篇
  国内免费   1篇
测绘学   1篇
大气科学   10篇
地球物理   18篇
地质学   38篇
海洋学   9篇
天文学   47篇
自然地理   5篇
  2021年   2篇
  2018年   2篇
  2017年   3篇
  2014年   2篇
  2013年   4篇
  2012年   3篇
  2010年   3篇
  2009年   8篇
  2008年   4篇
  2007年   2篇
  2006年   10篇
  2005年   7篇
  2004年   10篇
  2003年   8篇
  2002年   7篇
  2001年   4篇
  2000年   5篇
  1999年   6篇
  1998年   6篇
  1997年   7篇
  1996年   2篇
  1995年   5篇
  1994年   4篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1985年   2篇
  1984年   2篇
  1982年   1篇
  1980年   2篇
  1978年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有128条查询结果,搜索用时 31 毫秒
31.
Silt- to sand-size particles may be transported across middle continental shelves by currents forced by the radiation stress of variable-amplitude swell. With the passage of each group of waves of sufficient amplitude for the high waves in the group to resuspend bottom sediments, there is a seaward bias in the return of sediments to the seafloor. Over a storm season, with the passage of many wave groups, the net seaward sediment displacement may be 1-5 km.  相似文献   
32.
The partitioning behavior of cerium, europium, gadolinium and ytterbium between an aqueous “vapor” phase and water saturated silicate melt have been experimentally examined using a new experimental approach employing radioactive tracers and a double-capsule technique. Equilibrium was established by reversing the partition coefficient1 and by betatrack autoradiography. Aqueous solution compositions were varied by adding different amounts of chloride and in some cases fluoride or carbon dioxide. The H2O contents of the Spruce Pine pegmatite melts were varied by conducting experiments at 4.0 kb, 800°C and at 1.25 kb, 800°C. A jadeite-nepheline composition (75 wt% Jadeite) also was employed at 4.0 kb, 800°C.The chloride experiments (Spruce Pine 4 kb, 800°C) show a linear relationship between the cube of the chloride molality and the partition coefficients of the trivalent rare earths. Europium, under the experimental fO2 conditions (quartz-fayalite-magnetite buffer), varied linearly as the fifth power of the chloride molality. At the chloride molalities examined (<1.1 mC1), all the rare earths partitioned preferentially into the melt phase (KPRE <1). Relative to pure water, the presence of chloride and fluoride fon increased the partitioning of the individual rare earths into the vapor phase, while carbon dioxide did not. Europium anomalies were recorded 1n all experiments, particularly those involving the Spruce P1ne melt at 4.0 kb and 800°C which displayed a large positive europium anomaly at all chloride molalities. Furthermore, a relative fractionation of the trivalent rare earths was also observed in these experiments, such that KPCe>KPGd>KPYb. The smaller ytterbium ion was consistently concentrated in the melt phase relative to the other rare earths in all experiments on the Spruce Pine composition. Experiments on the jadeite-nepheline composition showed no relative fractionation and a positive europium anomaly. The 1.25 kb experiment on the Spruce Pine composition showed a negative europium anomaly in plots of KpRE vs. REE.The overall rare earth partitioning at a constant chloride molality (mCl = .914) was such that KPSP(1.25 kb) > KPSP(4.0 kb) > KPJd-Ne(4.0 kb), where SP = Spruce Pine, Jd-Ne = jadeitenepheli Using the model of Burnnam (1975), It is suggested that the trivalent rare earth partitioning is related to the cube of the melt octahedral site concentration; a property which 1n hydrous melts 1s dependent on melt composition and hydroxyl molality. Excellent agreement was found for the Spruce Pine melt, whereas the jadeite-nepheline melt gave apparent hydroxyl molalities which were too high for the measured partition coefficient. Additional octahedral sites are proposed for this unusual composition perhaps due to some aluminum in 6-fold coordination. The apparent compositional variation of europium partitioning at a constant oxygen fugacity is believed to be related to both the octahedral melt site concentration for trlvalent europium and an 8-coordinated site concentration for divalent europium. Any parameter which affects the numbers of these sites (PH2O, melt composition) will affect the rare earth partitioning. The observed dependency of the partition coefficient on the structural state of the melt could be as significant as its dependency on crystalline structural constraints. Furthermore, since PH2O can drastically effect the melt structural state, its effects could be reflected in melt/crystal partition coefficients.  相似文献   
33.
Eight interplanetary dust particles (IDPs) exhibiting a wide range of H and N isotopic anomalies have been studied by transmission electron microscopy, x-ray absorption near-edge structure spectroscopy, and Fourier-transform infrared spectroscopy. These anomalies are believed to have originated during chemical reactions in a cold molecular cloud that was the precursor to the Solar System. The chemical and mineralogical studies reported here thus constitute direct studies of preserved molecular cloud materials. The H and N isotopic anomalies are hosted by different hydrocarbons that reside in the abundant carbonaceous matrix of the IDPs. Infrared measurements constrain the major deuterium (D) host in the D-enriched IDPs to thermally labile aliphatic hydrocarbon groups attached to macromolecular material. Much of the large variation observed in D/H in this suite of IDPs reflects the variable loss of this labile component during atmospheric entry heating. IDPs with elevated 15N/14N ratios contain N in the form of amine (-NH2) functional groups that are likely attached to other molecules such as aromatic hydrocarbons. The host of the N isotopic anomalies is not as readily lost during entry heating as the D-rich material. Infrared analysis shows that while the organic matter in primitive anhydrous IDPs is similar to that observed in acid residues of primitive chondritic meteorites, the measured aromatic:aliphatic ratio is markedly lower in the IDPs.  相似文献   
34.
Summary. An approach for modelling fractured rock masses has been developed which has two main objectives: to maximise the quality of representation of the geometry of existing rock jointing and to use this within a loading model which takes full account of this style of jointing. Initially the work has been applied to the modelling of mine pillars and data from the Middleton Mine in the UK has been used as a case example. However, the general approach is applicable to all aspects of rock mass behaviour including the stress conditions found in hangingwalls, tunnels, block caving, and slopes. The rock mass fracture representation was based on a combination of explicit mapping of rock faces and the synthesis of this data into a three-dimensional model, based on the use of the FracMan computer model suite. Two-dimensional cross sections from this model were imported into the finite element computer model, ELFEN, for loading simulation. The ELFEN constitutive model for fracture simulation includes the Rotating Crack, and Rankine material models, in which fracturing is controlled by tensile strength and fracture energy parameters. For tension/compression stress states, the model is complemented with a capped Mohr-Coulomb criterion in which the softening response is coupled to the tensile model. Fracturing due to dilation is accommodated by introducing an explicit coupling between the inelastic strain accrued by the Mohr-Coulomb yield surface and the anisotropic degradation of the mutually orthogonal tensile yield surfaces of the rotating crack model. Pillars have been simulated with widths of 2.8, 7 and 14 m and a height of 7 m (the Middleton Mine pillars are typically 14 m wide and 7 m high). The evolution of the pillar failure under progressive loading through fracture extension and creation of new fractures is presented, and pillar capacities and stiffnesses are compared with empirical models. The agreement between the models is promising and the new model provides useful insights into the influence of pre-existing fractures. Further work is needed to consider the effects of three-dimensional loading and other boundary condition problems.  相似文献   
35.
首次采用经过改良的外标法校正数据的ICP-MS方法对石笋中的稀土元素含量进行了测定。结果表明,该方法可以用于测定石笋中含量很低的稀土元素,尤其是对含量相对较高的轻稀土元素如La、Ce可以获得较精确的数据。对采集于四川东北部诺水河溶洞群的石笋SJ3的分析结果显示,在相对温暖湿润时期的石笋沉积中稀土元素含量明显增加。可能的原因包括:(1)温暖湿润的气候条件有利于土壤和岩石的化学风化及稀土元素的活化;(2)温暖湿润的气候条件下地下水动力加强,使得地下水中稀土元素的载体(有机质、铁锰胶体和颗粒物质等)增多。因此,石笋沉积中的稀土元素可以用于研究上覆土壤和岩石的化学风化和地下水水文演化。  相似文献   
36.
Calculation of lava effusion rates from Landsat TM data   总被引:1,自引:0,他引:1  
 We present a thermal model to calculate the total thermal flux for lava flowing in tubes, on the surface, or under shallow water. Once defined, we use the total thermal flux to estimate effusion rates for active flows at Kilauea, Hawaii, on two dates. Input parameters were derived from Landsat Thematic Mapper (TM), field and laboratory measurements. Using these parameters we obtain effusion rates of 1.76±0.57 and 0.78±0.27 m3 s–1 on 23 July and 11 October 1991, respectively. These rates are corroborated by field measurements of 1.36±0.14 and 0.89±0.09 m3 s–1 for the same dates (Kauahikaua et al. 1996). Using weather satellite (AVHRR) data of lower spatial resolution, we obtain similar effusion rates for an additional 26 dates between the two TM-derived measurements. We assume that, although total effusion rates at the source declined over the period, the shut down of the ocean entry meant that effusion rates for the surface flows alone remained stable. Such synergetic use of remotely sensed data provides measurements that can (a) contribute to monitoring flow-field evolution, and (b) provide reliable numerical data for input into rheological and thermal models. We look forward to being able to produce estimates for effusion rates using data from high-spatial-resolution sensors in the earth observing system (EOS) era, such as Landsat 7, the hyperspectral imager, the advanced spaceborne thermal emission spectrometer, and the advanced land imager. Received: 25 July 1997 / Accepted: 26 February 1998  相似文献   
37.
Global warming may profoundly affect temporal and spatial distributions of surface water availability. While climate modelers cannot yet predict regional hydrologic changes with confidence, it is appropriate to begin examining the likely effects of water allocation institutions on society's adaptability to prospective climate change. Such institutions include basic systems of water law, specific statutes, systems of administration and enforcement, and social norms regarding acceptable water-use practices. Both climate and the changing nature of demands on the resource have affected the development and evolution of water allocation institutions in the United States. Water laws and administrative arrangements, for example, have adapted to changing circumstances, but the process of adaptation can be costly and subject to conflict. Analysis of past and ongoing institutional change is used to identify factors that may have a bearing on the costliness of adaptation to the uncertain impacts of global warming on water availability and water demands. Several elements are identified that should be incorporated in the design of future water policies to reduce the potential for disputes and resource degradation that might otherwise result if climate change alters regional hydrology.  相似文献   
38.
A Landsat Thematic Mapper (TM) image acquired on 23 July 1991 recorded widespread activity associated with the Episode 48 of the Pu'u 'O'o-Kupaianaha eruption of Kilauea Volcano, Hawaii. The scene contains a very large number (>3500) of thermally elevated near infrared (0.8–2.35 m) pixels (each 900 m2), which enable the spatial distribution of volcanic activity to be identified. This activity includes a lava lake within Pu'u 'O'o cone, an active lava tube system (7.9 km in length) with skylights between the Kupaianaha lava shield and several ocean entry points, and extensive active surface flows (total area of 1.3 km2) within a much larger area of cooling flows (total16 km2). The production of an average flux density map from the TM data of the flow field, wherein the average flux density is defined in units of Wm-2, allows for the chronology of emplacement of active and cooling flows to be determined. The flux density map reveals that there were at least three breakouts (>5000 Wm-2) feeding active flows, but on the day that the data were collected the TM recorded a waning phase of surface activity in this area, based on the relatively large amount of intermediate power-emitting (cooling) flows compared to high power-emitting (active) flows. The production of a comparable flux density map for future eruptions would aid in the assessment of volcanic hazards if the data were available in near-real time.  相似文献   
39.
Hummocky terrain composed of boulder gravel and a wavy contact between stratified till and sand are described and explained as products of subglacial meltwater activity beneath the Saginaw Lobe of the Laurentide Ice Sheet in south-central Michigan. Exposures and geophysical investigations of hummocky terrain in a tunnel channel reveal that hummocks (˜100m diameter) are glaciofluvial bedforms with a supraglacial melt-out till or till flow veneer. The hummocky terrain is interpreted as a subglacial glaciofluvial landscape rather than one of stagnant ice processes commonly assumed for hummocky landscapes. Sandy bedforms at another site are in-phase with a wavy contact at the base of a stratified till exposed for 50m along the margin of a tunnel channel. The 0.4m thick stratified till is overlain by up to 5m of compact, pebble-rich, sandy subglacial melt-out till. The contact between the till and sand has a wave form with a 0.5m amplitude and 3-5m wavelength. Bedding within the stratified till, sandy bedforms and melt-out till are mostly in-phase with each other. Clasts from the overlying stratified till penetrate and deform the underlying sand recording recoupling of the ice to its bed. Ice ripples cut into the base of river ice have a similar morphology and are considered analogs for cavities cut into the base of the glacier and subsequently filled with sand. Subglacial meltwater activity was not coeval at each study site, indicating that subglacial meltwater played important roles in the evolution of the subglacial environment beneath the Saginaw Lobe at different times.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号